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ABSTRACT 

We prove that for any cardinal r and for any finite graph H there is a graph G such 

that for any coloring of the pairs of vertices of G with r colors there is always a 
copy of H which is an induced subgraph of G so that both the edges of the copy 
and the edges of the complement of the copy are monochromatic. 

§0 Introduction 

In this paper  G , H  denote graphs,  i.e. sets o f  unordered  pairs. First we define 

the "true embedding"  part i t ion symbol  

G~--~ 2 (H)T, o. 

For  graphs G, H and cardinals r, o the symbol is said to hold if for  all colorings 

f :  G--,  r, g :  ( ~  a, there are a W C  U G ,  i.e. a set o f  vertices o f  G, and two colors 

# < r, v < a such that  G [ W],  the subgraph of  G induced by W, is isomorphic  to 

H a n d  for e E [W] 2, e E G implies f ( e )  = # and e ~ G implies f ( e )  = v. G 
2 ( H )  . . . .  as usual, denotes the negation o f  this statement.  

The main problem, if for a given triple H,  r and a a suitable G exists at all, 

should be attributed to Deuber. The symbol,  or rather a special instance of  it, was 

in t roduced in [ E - H - P ] ,  where we used the symbol  G ~ (H)~ for the statement 

a ~ (H)~,~. 

The first results were obtained in the early 1970's independently in [D], [E -H-P]  

and [N-R],  all o f  which implied that  

( l )  vlH l < wVr < ¢03G G >--) (H)~,~. 
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However in [E-H-P]  we made attempts to generalize (1) for the case of infinite 

graphs. We proved 

(2) _ ( H ) , ,  ~. VIH [ < 0oW" < ~03G G ~  2 

For a countable H we found a G of  cardinality 2 ~°, and we also proved that a 

countable G will not do in generah 

(3) v i o l - < c o  G~--~ 2 (K~,~)2,1- 

Here K~o,~ is the countable by countable complete bipartite graph. It was al- 

ready clear from the proof  of these results that unlike Ramsey's theorem, (1) and 

(2) will not easily generalize for Jinfinite H and 7. The real reason was only found 

in our paper [H-K] with Komj~ith. Indeed, 

(4) It is consistent with ZFC 'that 

3 IHI =: ~,vG G ~ (H)~,,. 

This can be proved by adding one Cohen real, and using a very simple graph H 

invented by Shelah several years earlier. 

Shortly after this Shelah [S] proved a result from the other direction: 

(5) It is consistent with ZFC that 

vHvT3G G ,--, (H)~,r .  

He proved that this generalizes for arbitrary relational structures in place of  

graphs. We do not formulate this generalization here precisely. 

(1 ) . . .  (5) leave the problem open if (2) can be generalized for infinite T. We still 

do not know this for IHI -- ~o, but we can prove in ZFC the following 

THEOREM. v l H  I < coVr3G G ~ (H)~,r. 

It seems to be clear that this admits a Shelah type generalization for finite rela- 

tional structures H, but we do not go into that. The rest of  the paper will be de- 

voted to the technically rather complicated proof  of the theorem. Unfortunately, 

the G we find is rather large. For IHI = k < w our G is of  size exp4 (expk(7) ÷) _< 

expk+5(T), but we did not bother to save one or two exponents. 
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§1. Nota t ion .  ) ,+-Saturated graphs and good  ideals 

In what  follows G denotes a graph on the vertex set K. With some abuse o f  no- 

ta t ion we will write G = Go and G = [ r ] 2 \ G  = G].  For  x < K and i < 2, we set 

G~(x) = {y < K: [x ,y}  ~ G~}. 

For  an infinite cardinal k, let 

H = H ( X ,  K) = [ e : e is a funct ion ^ ] E [ _< X ^ D o m  (e)  C r ^ Range(e  ) C 2}.  

For  E E H let 

G~ = {y < K:VXE D o m ( e ) y  E G,(~)(x)}. 

LEMMA 0. Assume  k >__ 00, K = 2 ×. There exists a graph G on the vertex set 

such that f o r  all e E H, [ G~ [ = K. In any such G there are pairwise disjoint sets 

A~ : a < K such that 

IG~ AA~ I  =K ho lds for  a < r ,  e E H .  

PROOF. r x : K. • 

Indeed G is just a )x+-saturated model o f  a graph on K, i.e. a model in which all 

types o f  size _< )~ are o f  cardinality K. 

In what  follows G and {A~ :c~ < K} are objects satisfying L e m m a  0. They o f  

course depend on the choice o f  )L 

Our  first aim is to define ideals in 1P(K), the set o f  all subsets o f  r. Let 

D = [ (~  :~ < X+) : V~,T/< ~+~ E H ^  ~ :g ~/= D o m ( ~ )  n D o m ( % )  = D}.  

Defini t ion  o f  good  and very good  K-ideals 

(a) J C  P(K) is a good  K-ideal if [K] <~ C J, J i s  proper,  X+ complete and for all 

(e~:~ < ~,+) E D there is a ~ < X + with G~ ~ J. 

(b) For  J C  IP(K) define 

J =  [ X C  K:~(e~:~  < X +) E D  v4 < X + x O  G~ E J} .  

(c) J C P(K) is a very good  K-ideal if J is a good  K-ideal and J = J, i.e. for  

X C K  

( 3 ( e ~ : ~  < h +)  E D v~ < h + XVI  G~ E J)  = X E  J. 

LEMMA 1. (a) [ K] <~ is a good d-ideal. 

(b) I f  J is a good d-ideal then J C J, and J is a very good d-ideal, i.e. ~ = 
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PROOF. (a) is trivial as c f ( ~ )  > A. 
(b) Assume now that J is a good K-ideal. This implies, by definition, that K $ 

J hence J is proper. 
Assume X, E J and let (6; : [ < A+) E D establish this for v < A. We can 

choose, by induction on q < A+, ordinals [(v, q)  < A+ in such a way that the func- 
tions (E;(,,, : v < A, q < A+] have pairwise disjoint domains. This can be done, as 
for any set IT1 s X a n d f o r a n y v <  A, I ( [  < h+:Dom(+')n T f  0)) I X .  Let 
now E, = U (E;(,,,) : v < A ) .  Then (E,: q < A+) E D and for 9 < A+ 

This proves that Pis  X+-complete. 
Assume now X E i.e. there: is an (cE : ,$ < A+) E D such that for [ < h' 

Assume that (6; : q < A+) E D establish this fact for [ < h+. We can choose for 
5. < A ordinals [ ( r )  and q({) < A+ in such a way that the functions (E~(~),E::~:  : 

{ < A + )  have pairwise disjoint domains. Let Er = E E ( ~ )  U ~.f:f: for { < A+. Then 
( E r : r <  A+) E D a n d  

hence X E 1 Note that this fact implies V ( E ~  : E, < h+) E D 3[ < h+, Gee $ j a s  
well. rn 

COROLLARY 1. Let Jo = j for J = [K]'". Then Jo is a very good K-ideal, and 
A, $ Jo for a! < K .  rn 

We only need the existence of a Jo satisfying the requirements of Corollary 1. 

In [E-H-PI we used a G and Jo with h = a, to  prove (2). In the proof given here 
using Jo we will have to define ideals in a direct product rather than in K. This re- 
quires some preliminaries. 

(1.1) First, for a k < w we choose cpk = cp = exp,(r)+, and Ak = h = exp3(cp) 

( K k  = K = 2h). 
We set A = X,,, A,; A will be the underlying set of all the ideals, which will 

be called A-ideals. Set 

P = ( B  C A : B = )( B,,V(u < cpB, c A,], the set of "boxes". 
,<P 

B, C, D will run over elements of P. For B E P, B, will denote the a-th projection. 
Similarly for x E A, x = (x, : a < cp) where x, E A,. 
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Let 

and 

H * =  { ( : (  = <e" :c~ < (p) A Vc~ < (? e'~ (5 H} 

D* = [<(~ : ( < X +) : V~ < X+(~ (5 H* A rot < (plea' : ( < X+> (5 D]. 

Note that in these definitions we do not require Dom(e ~) C As.  

For E E H* we write G, = X,,<~, G,~ (1A~ (5 P. For a family ~ C P(A) ,  gen(q r ) 

is the X+-complete ideal generated by q:, i.e. 

gen(~F) = [ X C A : U F '  C qr [qr' I _< X ^ X C  U % ' ] .  

Definition of good and very good A-ideals 

(a) I ° = genlB C A : 3c~ < ~B~ E Jol. 

(b) I c P(A)  is a good A-ideal if I ° C / ,  I is proper, X+-complete and for all 

( ,~:~ < X +) E D* there is a ~ < X + with G,~ ~ I. 

(c) For I C  P(A)  define 

[ =  [ X C  A : 3 ( ~  :~ < X +) E D* V~ < X + XCl G~ E I I .  

(d) I C P(A)  is a very good A-ideal if I is a good A-ideal and [ = / ,  i.e. for 

X C A  

] ( ~ : (  < k +) E D* Y( < ~,+ X N G,~ E I::, X E L 

Now we need the analogue of  Lemma 1. 

L•MMa 2. (a) I ° is a good A-ideal. 

(b) I f  I C P(A) is a good A-ideal then [is  a very good A-ideal. 

The proof of Lemma 2 is completely analogous to the proof of Lemma 1. How- 

ever, since it is a basic ingredient of  our proof we will give it in some detail. With 

a new abuse of notation we will use set theoretic operations defined on elements 

of  H* as if defined coordinatewise, e.g. if e0,161 E H*,  ~0 U ~ is the sequence 

(e~ U e~ : ~ < ~o), etc. 

PROOF OF (a). Assume <~ : ( < X +) E D*. 

Let o~ < ~. As A~ (~ J0 there is a ((o~) < X + such that Gog CI A~ ~ J0 for ( > 

(((~). There is a (* < X + such that ((o~) < (* for oz < u~. We claim that for (* < 

< k  + , G , ~ N A ~ I  ° . A s s u m e ~ C l B C A  : 3 c ~ < ¢ B ~ ( s J o } ,  [q-I < x . F ° r B ( 5  

q: let o~(B) = c~ be such that B~ (5 Jo. Let x~ (5 G,g fl A~\U {B~( m :B (5 q: ^ 

e~(B)=c~lforc~<~p. Thenx=(x~:ec<so)(sG,~kUCF, h e n c e G , ~ I  °. • 
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PROOF OF (b). A g a i n / i s  a proper ideal by the assumption. Now to prove that 

/ i s  M-complete  and T = / w e  can follow the proof  of  Lemma 1 using the follow- 

ing facts: 

Assume T~ C r ^ IT~[ -< k for ot < ¢ and ( ~ : ~  < k +) E D*. Then 

I[~ < k + : ~ a  <: ~ D o m ( ~ )  f3 T~ ~ O]1 < k. 

I f  {~,:p < X] have pairwise disjoint domains,  i.e. v u  < ~o Dom(c~)  O 
ot D o m ( ~ )  = O for v :~ # < k then U,<×¢, = ( U { ~ : ~  < X] :u  < ¢) E H*.  • 

COROLLARY 2. Let Io = [o. Then Io is a very good A-ideal. • 

§2. Further notation for z-colored G's. Motivation 

As in our theorem both G and G are colored with 7 colors, we may assume that 

we are given an f :  [K] 2 -~ ~-. First for x E ~, i < 2 and p < r we define 

Gi, v(X) = l Y E Gi(x  ) : f ( { x , y } )  = u}. 

Clearly Gi(x)  = U [ Gi , , (x)  : ~, < r ] .  Define 

T =  [(~ ,Ao,At):  1o~] U AoU AI Q ~P^~ ~ AoU A1 ^ A0 f"l Al : Q~I.  

The elements of  T will be called triples. Define 

Nzxo,/,~ = I(go,g~) :V i  < 2 gi E zx'r}. 

The elements of  Nao,~, will be called A0,A~-patterns or, briefly, patterns. Note 

that INao,a~l _ 7 I'~°U'~al _< 2 ~. 

(2.1) Let (U,Ao, A~) E T, (go,g~) G N~o,a,, B C A, x E B, ;  we define 
B B G,~o,A , (x) C B and Ggo,g 1 (X) C B as follows: 

G~o,,~ ,(x) = X X (Gi(x) t3B~) x X B~ 
i < 2  ~EA, / ~ A o U A  I 

Cg,g, = X X 
i < 2  /3EA, 

Note that both sets defined above are boxes. 

The following is a basic fact: 

LEMMA 3. For(e~,Ao,  A ~ ) E T ,  B C A ,  x G B ~  

(Gi,&o3)(x) ("1B~) × X B~. 

PROOF. 

tive law. 

and 

G~o,al (X) = U [ GgBo.g, (x)  : (go,gl ) E NAo.a 1 ]. 

Using Gi(x)  f) B~ = U { Gi,, (x) f) B~ : ~ < r ], this is just the distribu- 
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COROLLARY 3. 

pie. Then 

We now formula te  an obvious  

Assume I is a very good A-ideal, B f~ I and ( o~, A o, A ~ ) is a tri- 

I{x E B~ : Gffo,a, (x) E I l l  -- X. 

PROOF. For  x E B~ define e~ E H.  eft = ~ for  ~ ff /x o U AI and for  i < 2, x E 

A i, D o r a ( e l )  = {x], e f (x )  = i. Then G,~ Cl B~ = Gi(x) n B¢ for /3 ~ z~i, and so 

for  ~ = (e~ :/3 < ¢)  we have 

G~o,a , (x) = G,.  Cl B. 

Since for  a one- to-one  sequence [x~:~ < X +} we have (Cx~:~ < X +) E D*,  this 

proves  the claim. • 

Now our  aim is to prove  that ,  given a graph  H with vertex set [Yo . . . . .  Yk-~ }, 

we can find colors  v0,u~ < r, ~0 < ' " <  uk_~ < ~,, and xj E A~j such tha t  

G [{x / : j  < k }] is i somorphic  to H and G [{ xj : j  < k ]], G [ I x / : j  < k I] are mono-  

chromat ic  in colors u~, i < 2, respectively. Loosely speaking,  for  this we need two 

colors Uo, u~, a set F = {Uo,. •. ,c~k-i } such that  for any large B, for  a n y j  < k - 1 

B (x) is still large for  and for  any part i t ion A 0 U AI = {c~j+~ . . . . .  c~_~ ] the set G~o~, 

some x G B~ ,  where ffi is the constant  u~ funct ion on Ai. Unfor tuna te ly  " large"  

will depend on the stage j we are in. Hence  we will have to extend the very good  

A-ideal  Io to very good A-ideals I0 C -  • • C I~_~, and define somehow which colors 

are good for  these ideals. The main  tool for  this is given in the next chapter .  

§3. Building a partition tree in the product set A 

LEMMA 4. Assume I is a very good A-ideal. B C A (B E P) and B ~ I. Assume 

further that for  every triple (a ,  Ao, A~) E T a set o f  patterns o S~,~o,~ I C N~o,~ , is 

given in such a way that for  x E  B~ and (go,gl)  f~ $2,~o.,.~ 

B (X) E I. Ggo,gi 

o Then there exist a C C B ( C E P) ,  I C J and S~,~o,a ~ C S.ao,~ , such that J is a 

very good A-ideal, C f~ J and 

(1) ¥ ( a ,  Ao ,A1 )ET¥(go ,g l ) f~S~ ,~o ,a~  V x E C  ~ Ggo,g (x) E I, 

(2) ¥ ( D C C ^ D ~ J )  V(~,Ao,  A 1 ) E T V ( g o , g ~ ) E S . , ~ o , ~ 3 x E D .  

o (x) f~I. such that Ggo.g ~ 
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PROOF. We start  with a r emark .  B ~ I implies tha t  there are sets Z~ C r,  

]Z~ I _< ~, for  a < ~ such that  for  every ~ 6 H *  with Vo~ < ~o(Dom(e ~) f'l Z~ = ~ )  

G, f'l B ~ L Denot ing by H i  the set [E 6 H *  : rot < ~o Dom(E ~) f'l Z~ -- O I, it is 

clear that  for  V<~ : ~ < k+> 6 D* 3~o < X + V~o < ~ < X + 

E~ e H i .  

We also r emark  that  it is sufficient to prove  the existence o f  a good  A-ideal  J as 

above  with C ~ Z Indeed,  if J satisfies the above  requirements  so does J a n d ,  by 

L e m m a  2, J i s  a very good  A-ideal .  

Now we will define a generalized part i t ion tree consisting o f  subsets o f  B. More  

precisely, for  every ~b E "X, ~ ~ (22¢) + and < o / , A 0 , A I >  • T w e  define a subset  

B ~ C B, Sot¢ AO AI C sO A0 AI and e. • H i .  For  . = 0, ¢ = O,  B ~ = B, S~ao,zx , = 

Assume 0 < v _< (22~) + and for ¢ • uk, # < u we have defined all these func- 

tions in such a way that the following conditions (i)... (v) hold. 

(i) B ¢ • P o r B  ~ • L , . • I ¥ ~ .  

(ii) For  ~ '  C #, B~' D B ~, S2~ao,a, D S~,ao,a,- 

(iii) For / z '  < #, ~,, C ~ (i.e. vet < ¢ e,, ~, C e~ ). 

(iv) B C I G ,  C U { B ~ : ~ E ~ X } .  

(v) For  <g0,gl> ~ S~,ao,a, and for  x • B~ 

B ¢, Ggo,g I (x) E I. 

In  case u is limit set B ¢' = N~<~B ¢'1", c~ = U~<~ ~ and S~.ao.~ , = f-'l~<~ ~,~.ao.~ ~ . 

It is left to the reader to check that  (i)- • • (v) still hold.  Assume now that  ~ = # + 1 

is a successor. Note  that  in this case I~1 ~ 2z~- 

Let ( i f ,p)  = ¢/U [<~,P>I for  ~ E ~X. ( i f ,p)  is the general element o f  "X. 

Let 

K ¢~ = {D C B~ : ~(c~,Ao,A~ > • T B<go,gl> • S~,Ao,,Z ~ ¥X • D,~ GD,gl (X) • I}.  

We claim that  if J = g e n ( K  ¢ U I )  is a good  A-ideal  with B ~ ~ i ,  then B ~ = C, 

and S~,~o A ' = S~,ao,a , prove  the Lemma .  Indeed (1) holds by (v) and (2) holds as 

if for  some D C B~(D ~ P) and for  <o:,Ao, A~> @ T, (go,g~> • S~,~Xo,~, v x •  D~ 

(G~,g~ (x) • I)  holds, then D • J,  by the defini t ion of  K ~. 

Hence  f rom now on we assume that  g e n ( K  ~ U I )  is not  a good  A-ideal  on B ~, 

i.e. for  all # ~ "X, 

(3.1) ~ ( ~  : ~ < X+> • D* ¥~ < k + ( G ~  CI B ~ • g e n ( K  ¢' U I))  
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holds, and we will arrive at a contradiction. First, using [~X[ _< exp3 (r)  exp2(~) = 

and the remark made at the start of  the proof, we can choose ~(¢) < X + in such 

a way that ¢~¢~ ~ H I  and the functions 

~ and ~ ¢ ) : ¢ 6 ~ X  

have pairwise disjoint domains (coordinatewise of  course) and then we can set 

Now, by the indirect assumption {3.1), for each ¢ 6 "X we can choose subsets 

B ¢'~ C B ¢, p < k in such a way that B ¢'~ ~ P or B ¢'~ 6 / ,  

G,, I"1B ¢ C G,~,¢, N B ¢ C U { B¢'~ :P < X}. 

Moreover, for B ¢': ~ I for some (o~,h0,A~> ~ Ta n d  (g0,g~> ~ S~¢,ao.a, we have 

¢ ~ B ¢.p Vx e B~ '~ ,--,o.~, (x) • I ) .  

Let 

Sc,,,~o,aj ¢'p = S~,~o,a,\{(go,gl> E S,~,~o,~¢ : wx 6 B¢'P~ vgo,g ~ ¢,z/"' E I ] .  

We have defined all the necessary sets for v = # + 1 and again it is easy to check 

that ( i ) . . .  (v) hold. Moreover, we know that B :'p ~ I implies that 

¢,,p ¢ 
S,~,ao,A1 ~ S~.Ao,~I- 

Let o briefly denote the cardinal (22~) + <__ k = exp3 (so). First of all, ~o E H~.  We 

now claim that, for some ¢ 6 °X, B ¢1~+1 ~ I holds for all p < a. Indeed, other- 

wise, by the remark made at the beginning of  the proof,  and by (iv), we have 

B n G,~ ~ I and at the same time 

B A  G , o C U { B ¢ : ¢  E °X} C U U{B¢I~+~:¢ C "X^B¢I~+I E l j  E 1  

by the k+-completeness of I, a contradiction. 

We know that for this ¢ C °~ for each p < a there is an <ot, A0,A 1 > E Twi th  

S¢l~+~.ao,a, S ~'~,Ao.a,~¢t~. Define a mapping h : [a] 2 --* T as follows. For # < v < o, 

h(# ,a )  = (a ,  Ao, A~) for a triple satisfying ~'~,ao, a ,~¢ l~  S ~'~.ao.A,~¢l~. Note that ITI _< 2 ~. 

By the Erd6s-Rado Theorem (22~)+-o ((2~)+)22~ there are a I' C a, ]Pl = (2~) + 

and a triple <c~,Ao,A~> E Tsuch  that for # < v,/~,r  E I', h(# , v )  = (a ,  Ao, A~>. 

But then c¢1~ ¢¢1~ for/z < v E F. Considering that S~,~o,~ , C N~ o ~, and JJct,AO,A 1 ~-~ ~-~CG~O,AI 

IN~o.~, [ _< 2 ~, this is a contradiction. • 
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We just  add two remarks .  

COROLLARY 4. Assume I, J, C and S~,ao,~ ~ satisfy the requirements o f  Lemma 

4. Then for  (ct ,Ao,A~) ~ T 

S~,ao,~ ~ ~ ®. 

PROOV. By Corol la ry  3, c G, xo,~, (x) ~ I for  some x ~ Co`. By L e m m a  3, then 

GCg,(X)  ~ I for  some (go,g~) ~ Nao.~,. By (1) o f  L e m m a  4, then (go,g~)  

S~,~o,~ , • • 

COROtLARY 5. Under the above conditions, i f ( c~ ,Ao ,A1)  ~ T, (go ,g l )  

S~,ao,Z~ ~, and A~ C Ai for  i < 2 then (go[A~,g l  [ A'I) ~ So`,a~,~,~. 

PROOF. For  all x ~ Co,, c" c (x).  By (2), there is an x ~ C~ Ggo,g I (X)  ~ GgolAb,g ~ IA'~ 
with Ggo,g , c  (x) f~ I, hence by (l)  (go[A3,gl  I q> • 

§ 4 .  E n d  o f  t h e  p r o o f  

Let Io be the very good  A-ideal  defined in Coro l la ry  2, A B0. Let o SoG A0, A 1 : 

N~o,~ ,. We define the very good A- idea l s / j ,  and S~,~o,~ , by induction o n j  < k as 

follows. I f / j , B i ,  S~,ao,a ~ satisfy the assumptions of  L e m m a  4 let/i+1 ,Bj+l,  S~,+~o,a~ 

satisfy the requirements  o f  this Lemma .  Note  that  Io C .  • • C Ik-1, Bo D-  • - DBk-1, 

S°.,ao,/,, D " " D Sò,,ao,,~.k-I , Bk- t  f~ ii" 

Let Tk=  { (~ ,Ao ,Ai )  E T:  I[~]  UAo U A I [  -< k ^ ~  < A o U  A1}. For  ( ~ , A o , A l ) ,  

(c~'A~,A'I) E Tk write (o~,Ao, Al)  -- ( a ' ,A~ ,A ' I )  i ff  the m o n o t o n e  m a p  a- f rom 

Ao U A1 onto  A~ U A'~ sends A~ on to  A~, and write 

(c~,A0,A 1) - *  (o~;A~,A'1) i ff  (c~,Ao,A1) - (c~',A~),A'I) 

J _ J and S~,ao,a ~ - So`, ab, a,~ f o r j  < k. Consider ing that  ]Nao,a , [ < ~" for  ]Ao U A1] < k, 

each equivalence class of  - is split into at mos t  2 T equivalence classes of  - * ,  

hence by the E r d 6 s - R a d o  T h e o r e m  

there  is a set 1" C ~o, typ I" = r + such tha t  for  { a } , A o , A ~ , [ c d } , A 6 , A ]  C F, 

( ~ , A o , A 1 ) , ( a ' , A b , A ' I )  E Tk, (c~,A0,Al)  - (c~',A~,A'0 we have 

(4.1) (,:~,Ao,AI) - *  (cd, A~,A'l) .  

For  v < r and A C I" let v i a  denote  the constant  funct ion with value v and do- 

main  A. Let c~ = rain I ' .  Let I" \ [ o~ ] = I'o U I'l be a parti t ion of  I ' \  [ ~ } into the union 
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of  two disjoint subsets of  type r +. By Corollary 4, S~,ro,r, :~ •. Let (go,g1) E 

S~,vo,r~. There are subsets I'~ C Fi and ordinals ~i < • such that typ I'~ = ~-+ and 

g,I r7 - -  ~ i  for i < 2. By Corollary 5, this means 

p k-1 ( ol ro, , Iv;> S ,rs,r;. 
Using the homogenei ty (4.1), it follows that for all (~P, Ao,A1) E Tk, 

(c~'} U Ao UAl C r 

k-I  

Let now a~o < -  - • < a~t_~, e~ E I" f o r j  < 1 _.< k. If  follows easily by induction on 1 

that for every graph H with vertex set lYj :J < l} and for every C C B k-~ C ~ It, 

there are xj E C~,  j < l in such a way that the map yj ~ xj is an isomorphism of  

H and the graphs G~[lxj : j  < l 1] are monochromatic  in the colors ~i for i < 2. 

Indeed let ~i = 1o~:0 < j  < l: lY0,Yj} E Hi} for i < 2. There is an Xo E C~ o 
c 

w i t h  G,o l~o ,~ , l~(Xo)  ~ Ii_ I. 

Applying the induction hypothesis for 

C r c :G,olZxo,~l~(Xo), l -  1 and H[lYi:O<i<l]] 

the claim follows. • 
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