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ABSTRACT
We prove that for any cardinal 7 and for any finite graph H there is a graph G such
that for any coloring of the pairs of vertices of G with 7 colors there is always a
copy of H which is an induced subgraph of G so that both the edges of the copy
and the edges of the complement of the copy are monochromatic.

§0 Introduction

In this paper G, H denote graphs, i.e. sets of unordered pairs. First we define
the “true embedding” partition symbol

G- (H)2,.

For graphs G, H and cardinals 7, o the symbol is said to hold if for all colorings
f:G—1,g:G— 0, there are a W C UG, i.c. a set of vertices of G, and two colors
u < 1, v < o such that G[W1], the subgraph of G induced by W, is isomorphic to
H and for e € [W]?, e € G implies f(e) = u and e & G implies f(e) = v. G »
(H )3,0, as usual, denotes the negation of this statement.

The main problem, if for a given triple H, 7 and ¢ a suitable G exists at all,
should be attributed to Deuber. The symbol, or rather a special instance of it, was
introduced in [E-H-P], where we used the symbol G ~ (H)? for the statement
G~ (H):,.

The first results were obtained in the early 1970’s independently in [D], [E-H-P]
and [N-R], all of which implied that

(1) V|H| < w¥r1<w3G G~ (H),.
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However in [E-H-P] we made attempts to generalize (1) for the case of infinite
graphs. We proved

@) V|H| <wvr<wiG G~ (H2,.

For a countable H we found a G of cardinality 2¢, and we also proved that a
countable G will not do in general:

3) VIG|<w G (Kyu)ii.

Here K., , is the countable by countable complete bipartite graph. It was al-
ready clear from the proof of these results that unlike Ramsey’s theorem, (1) and
(2) will not easily generalize for infinite / and 7. The real reason was only found
in our paper [H-K] with Komjath. Indeed,

(4) It is consistent with ZFC that

1|H| =w0,vG G (H),.

This can be proved by adding one Cohen real, and using a very simple graph H
invented by Shelah several years earlier.

Shortly after this Shelah [S] proved a result from the other direction:

(5) It is consistent with ZFC that

vHvraG G~ (H)?,.

He proved that this generalizes for arbitrary relational structures in place of
graphs. We do not formulate this generalization here precisely.

(1)...(5) leave the problem open if (2) can be generalized for infinite 7. We still
do not know this for | H| = w, but we can prove in ZFC the following

THEOREM. V|H| < wV7IG G- (H)?,.

It seems to be clear that this admits a Shelah type generalization for finite rela-
tional structures H, but we do not go into that. The rest of the paper will be de-
voted to the technically rather complicated proof of the theorem. Unfortunately,
the G we find is rather large. For | H| = k < w our G is of size exps(expy(7)*) <
eXPr+s(7), but we did not bother to save one or two exponents.
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§1. Notation. A*-Saturated graphs and good ideals

In what follows G denotes a graph on the vertex set x. With some abuse of no-
tation we will write G = Gy and G = [«]*>\G = G,. For x < k and i < 2, we set

Gi(x) =y <«k:{x,y} € Gi}.
For an infinite cardinal \, let
H = H(\«) = {e:eis a function A]e| = A A Dom(e) C « A Range(e) C 2}.
For e € H let
G . ={y<«k:vx&Dom(e)y € G, (x)].

LemMMA 0. Assume \ = w, k = 2. There exists a graph G on the vertex set x
such that for all e € H, |G.| = «. In any such G there are pairwise disjoint sets
A, :a <k such that

|G.NA,| =« holds for a<xk, e€€H.
PrROOF. «" =«. |

Indeed G is just a N*-saturated model of a graph on «, i.e. a model in which all
types of size < A are of cardinality «.

In what follows G and {A,: o < «} are objects satisfying Lemma 0. They of
course depend on the choice of A.

Our first aim is to define ideals in P(k), the set of all subsets of . Let

D= (e £ <N):vE, < Neg € HAE # n= Dom(e;) N Dom(e,) = B}

Definition of good and very good x-ideals

(@) JC P(x)is a good k-ideal if [x]<* C J, J is proper, A* complete and for all
(eg: & < N") € Dthereis a £ < A* with G, & J.

{b) For J C P(«x) define

J={XCr:Ne:§ <NHYEDVESN XNG, € ).
(c) J C P(k) is a very good «-ideal if J is a good «-ideal and J = J, i.e. for
XCk
(e E<NHYEDVESN XNG, €)= X€E

LeMMmA 1. (a) [«]<* is a good k-ideal.
(b) If Jis a good «-ideal then J C J, and J is a very good «-ideal, i.e. J = J.
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ProoF. (a) is trivial as cf (k) > A.

(b) Assume now that J is a good x-ideal. This implies, by definition, that « &
J hence J is proper.

Assume X, € J and let (¢/:# < A\*) € D establish this for » < \. We can
choose, by induction on ¢ < A*, ordinals £(»,7) < A* in such a way that the func-
tions {ef,,, : ¥ <\, n < \*} have pairwise disjoint domains. This can be done, as
for any set |T| < X and for any » < A, |[{¢§ < A" :Dom(ef) N T # J}| < \. Let
now e, = U(ef, 7 <A}. Then (¢,:n < A*) € D and for < \*

( U X,,) NG, cU(X,NGg,, )EJ hence |JX, €
p<\ y<A p<A
This proves that Jis A\*-complete.

Assume now X € J, i.e. there is an (e, : £ < \*) € D such that for § < \*

XNG, el

Assume that (e;E 1 < N\*) € D establish this fact for ¢ < A*. We can choose for
¢ < A\ ordinals £(¢) and 7({) < AT in such a way that the functions [eg((),ef((sf)) :
¢ < M} have pairwise disjoint domains. Let € = e; U ef((sf)) for { < A\*. Then
(§:{<AN"Y€Dand

XNG,CXNG,, N Gens&g)) cJ for { < \Y,

hence X € J. Note that this fact implies V(g:§ <N EDIE <N, G, & J as
well. [ |

COROLLARY 1. Let Jy = J for J = [«k]<*. Then J, is a very good «-ideal, and
AQ¢J0f0r0<K. |

We only need the existence of a J; satisfying the requirements of Corollary 1.
In [E-H-P] we used a G and J, with A\ = @, to prove (2). In the proof given here
using J, we will have to define ideals in a direct product rather than in «. This re-
quires some preliminaries.

(1.1) First, for a k < w we choose ¢, = ¢ = exp,(7)F, and A\, = N = exp;(¢)
(ke = k = 2M).

We set A = X <, Aq; A will be the underlying set of all the ideals, which will
be called A-ideals. Set

P={BCA:B= X B, Va < ¢B, C A,}, the set of “boxes”.

a<le
B, C, D will run over elements of P. For B € P, B, will denote the a-th projection.

Similarly for x € 4, x = {x,:ax < ¢) where x, € A4,,.
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Let
H*={e:e=(e*":a<p)rVa<gpe* € H)}
and
D*=(e:E <N :VE<Ne € H AVa < plef: £ <\Y) € D).

Note that in these definitions we do nof require Dom(e®) C A,.
For e € H* we write G, = X 4<, G.«N A, € P. For a family F CIP(A4), gen(‘F)
is the A*-complete ideal generated by F, i.e.

gen(T) = (XCA: 3T CF|F | =AaXCUTF').

Definition of good and very good A-ideals

(@ I°=gen{BC A:3a < ¢B, € J,}.

(b) I C P(A) is a good A-ideal if I° C I, I is proper, A" -complete and for all
(e;:£ <N") € D* there is a £ < \* with G, & I.

(c) For I C P(A) define

f:{XCA:EI(eE:E<)\+>€D*V£<)\+XHG(EEI].

(d) I C P(A) is a very good A-ideal if I is a good A-ideal and [ = I, i.e. for
XCA

W E<NHED'VEKN XNG, EI=XEL
Now we need the analogue of Lemma 1.

LemMma 2. (a) I° is a good A-ideal.
(b) If I C P(A) is a good A-ideal then I is a very good A-ideal.

The proof of Lemma 2 is completely analogous to the proof of Lemma 1. How-
ever, since it is a basic ingredient of our proof we will give it in some detail. With
a new abuse of notation we will use set theoretic operations defined on elements
of H* as if defined coordinatewise, e.g. if €¢,¢; € H*, ¢, U ¢, is the sequence
(eg U el i < @), etc.

PROOF OF (a). Assume {¢;:£ < A*) € D",

Let o < ¢. As A, & J, there is a £(o) < N* such that GeNA, & Jfor k>
£(a). There is a £* < At such that £(«) < £* for o < ¢. We claim that for £* <
E<NL G, NAEI° Assume T C{BCA:3a<eB,€J}, |FT|<A ForBe
T let a(B) = « be such that B, € Jy. Let x, € Gg N ANU{By(p:BE T A
a(B) = a} for « < ¢. Then x = (x,:a < ¢) € G \UT, hence G, & I°. ]
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ProoF oF (b). Again Tis a proper ideal by the assumption. Now to prove that
Tis A*-complete and I = I'we can follow the proof of Lemma 1 using the follow-
ing facts:

Assume T, C kA |T,| < X for a < ¢ and (¢;: £ < A*) € D*. Then

[(E<N:da<oDom(ef)NT,+ T} <\

If {e,:» < A} have pairwise disjoint domains, i.e. Vo < ¢ Dom(eZ) N
Dom(ef) =@ forv# pu<NthenU, e, =(U{el v <Aia<edEe H*. =

COROLLARY 2. Let Iy = I°. Then I, is a very good A-ideal. [

§2. Further notation for r-colored G’s. Motivation

As in our theorem both G and G are colored with 7 colors, we may assume that
we are given an f: [«]? — 7. First for x € «, i < 2 and » < 7 we define

Gi,(x) =1y € Gi(x): f({x,y}) = »}.
Clearly G;(x) =U{G; ,(x):» < 7}. Define
T=Ka,Ag, A {a]UAUA Corna & AgUA AANA =D,
The elements of T will be called triples. Define
Nag,a, = 80,8101 Vi< 2 g € Y1),

The elements of N, 4, will be called Ag, A;-patterns or, briefly, patterns. Note
that | Ny, a,| < 71481 < 29,

(2.1) Let (a,Ap,A 1> € T, (80,81 € Na,a,» B C A, x € B,; we define
GAO a(x)CBand G go £, (X) C B as follows:

GE o (x)=X X (G(xyNBgyx X By and

i<2 Bea, BEAQUA,
GE o () =X X (Gig@(x)NB) x X By
i<2 BEA, BeAoUA,

Note that both sets defined above are boxes.
The following is a basic fact:

LemMma 3. For{a,Ag,A) €T, BC A, x€ B,
GE A, (x) =\U(GE , (x):(80,81) € Nag.a,}-

Proor. Using G;(x) N Bg =U{G;,(x) N Bg:v < 7}, this is just the distribu-
tive law. [ ]
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We now formulate an obvious

COROLLARY 3. Assume I is a very good A-ideal, B & I and {o, Ao, Ay) is a tri-
ple. Then

{xeB,:GE s (x) €T} <\

Proor. For x € B, define ef €EH f=0forB¢ AgUA and fori< 2, x €
A;, Dom(e?) = {x}, e£(x) = i. Then G5 N Bz = G,(x) N B, for B € A,, and so
for €, = (e’ : 8 < ¢ we have

GE A, (x) =G, NB.

Since for a one-to-one sequence {x;:£ < A"} we have (&1 & < ATY € D*, this
proves the claim. [ |

Now our aim is to prove that, given a graph H with vertex set { yo,...,Vi—1},
we can find colors vy, »; < 7, ap <-+-< -y < ¢, and x; € A, such that
Gl{x;:j < k}] is isomorphic to H and G[{x;:j < k}], G[{x;:j < k}] are mono-
chromatic in colors »;, i < 2, respectively. Loosely speaking, for this we need two
colors vy, vy, aset I = {ay, - . ., a,_; ] such that for any large B, forany j < k —1
and for any partition 4 U Ay = {o41,. .., 01 ] the set G,f),»l (x) is still large for
some x € B, , where 7; is the constant »; function on A,. Unfortunately “large”
will depend on the stage / we are in. Hence we will have to extend the very good
A-ideal I, to very good A-ideals I, C - - - C I;,_;, and define somehow which colors
are good for these ideals. The main tool for this is given in the next chapter.

§3. Building a partition tree in the product set A

LemMa 4.  Assume I is a very good A-ideal. BC A (B € P) and B & I. Assume
Sfurther that for every triple {a,Ay,A ) € T a set of patterns SS,AO,A, C Npya, IS
given in such a way that for x € B, and {80,81) & SO a,.a,

GE,(x) el

Then there exista CC B (C € P), IC Jand S, a,.a, C Soa, a, SUch that J is a
very good A-ideal, C & J and
(1) V<a’A0:A1> € TV<g01gl> é Scx,AO,Al Vx € Coz ch(;,gl(x) € ]a

2 V(IDCCADEJ) Vi, Ap,A1) € T V{g,81) € Sq, 0,2, IX E D,
such that G2 , (x) & L.
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ProoF. We start with a remark. B & I implies that there are sets Z, C «,
|Z,] = \ for a < ¢ such that for every e € H* with va < ¢(Dom(e®) N Z, = &)
G.N B & I. Denoting by Hy the set {e € H*:Ya < ¢ Dom(e®*) N Z, = B}, it is
clear that for V(e; 1 £ <AN*) € D* 3Ep < N VE < E <N

GEEHE'

We also remark that it is sufficient to prove the existence of a good A-ideal J as
above with C & J. Indeed, if J satisfies the above requirements so does J and, by
Lemma 2, J is a very good A-ideal.

Now we will define a generalized partition tree consisting of subsets of B. More
precisely, for every ¢ € *A, v < (2%°)* and (&, Ay, A;) € T we define a subset
BYC B, SY 5,0, CS%apa,ande, € H}. Forv=0,¢y =@, B2 =B, S2, 4 =
S2 agapr €2 =(D:a< p).

Assume 0 < » < (22°)* and for § € ¥\, u < » we have defined all these func-
tions in such a way that the following conditions (i). . . (v) hold.

() B¥ePorBYel ¢, € Hp.

(ii) Fory’' Cy, B¥ DBY, SV s s, DSl a0,

(ili) For o' < p, €, Ce, (i.e. Ya < peg Cel).

(iv) BN G, CU{BY:y € *\}.

(v) For{go,81) & S(f,AO,A; and for x € B}

v
Gglf),gl(x) el

In case » is limit set BY =<, B, ¢, =U,<, ¢, and S¥ 4, a, =MNyue, ST 4,
It is left to the reader to check that (i) - - - (v) still hold. Assume now that y = pu + 1
is a successor. Note that in this case |»| < 2%°.

Let (¢,p) = ¢ U [(u,p)} for ¥ € #\. (¥,p) is the general element of *A.

Let

KY ={DCB":3(a,Ap,A) € T 3(g0,81) € 8L 1,4, VXE D, G2, (x) € I}.

We claim that if J = gen(K¥ U I) is a good A-ideal with B¥ & J, then BY = C,
and ng’ 80,8, = Sa,a0,4, Prove the Lemma. Indeed (1) holds by (v) and (2) holds as
if for some D C BY(D € P) and for {a,A¢,A1) € T, {g0,81) € S a8, VX E D,
(Gg 4, (x) € I) holds, then D € J, by the definition of K¥.

Hence from now on we assume that gen(K¥ U I) is not a good A-ideal on BY,
i.e. for all y € #],

3.1) (el £ <N*YED* VE< N (Gy N BY € gen(KY U 1)
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holds, and we will arrive at a contradiction. First, using |*\| < exp;(7)®*P2(") =
A and the remark made at the start of the proof, we can choose £(y¥) < A* in such
a way that €y, € Hp and the functions

e, and €y ¥ €N
have pairwise disjoint domains (coordinatewise of course) and then we can set
6, =¢ Ulely Vv E*N EH}.

Now, by the indirect assumption (3.1), for each ¥ € *A we can choose subsets
BY¥* C BY, p < \ in such a way that B¥* € P or B¥-* € I,

G, NBYC Gy

eE(xlf)

NBYCJ{B¥*:p <A]}.
Moreover, for B¥* & I for some (o, Ay, A;Y € T and {gy,2,) € SX,AO,A, we have

vx € BY* (GB  (x) e I).

8081

Let
SYRa, = SY a0 \K80:81) € S ay s, VX E BYPGE' Y (x) €1).

We have defined all the necessary sets for » = y + 1 and again it is easy to check
that (i). . . (v) hold. Moreover, we know that B¥:* ¢ I implies that

aA0A1§SaA0A,

Let o briefly denote the cardinal (22°)* < \ = exp; (¢). First of all, ¢, € H}. We
now claim that, for some ¢ € °\, B¥!**! & I holds for all » < ¢. Indeed, other-
wise, by the remark made at the beginning of the proof, and by (iv), we have
BN G, & Iand at the same time

BNG, CU(BY:yerNcUUB!:yeaxaBlellel
v<o
by the A*-completeness of I, a contradiction,

We know that for this ¥ € 7\ for each » < ¢ there is an {a,A(,A;) € T with
sf,‘;g,;[ o S“"ZO a,- Define a mapping A: [0]2 — T as follows. For u < » < 0,
h(p,0) = {a,Ao,A,) for a triple satisfying S”' My - Sf',;‘o a,- Note that |T| < 2%,
By the Erdés-Rado Theorem (22°)* > ((2¢)*)3. therearea ' C g, |T| = (29)*
and a triple (a, Ay, A ,) € T such that for u < », u,v €T, A(p,v) = {a, Ay, Ap).
But then ;“A‘O AR S,, 9,8, fOr u < v €T. Considering that $2,  », C Ny, 4, and
| Nao,a,| < 2%, this is a contradiction. |
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We just add two remarks.

CoRroLLARY 4. Assume I, J, C and S, s, A, Satisfy the requirements of Lemma
4. Then for {a,Ap,A)E T

SaiAOYAI ¢ @-

Proor. By Corollary 3, GACO, a,(x) & I for some x € C,. By Lemma 3, then
GE ., (x) & I for some g, € Ny, 4,- By (1) of Lemma 4, then (go,8,) €
Sa,Ao,Al' ]

CoROLLARY 5. Under the above conditions, if {a,Ay, A1) € T, (8,81) €
Se,a0,8,> and A; C A, for i < 2 then {go| Ay, &1 | ALY € Sy ap, a1

Proor. ForalxeC,, ch(;‘gl (x)C Gg%lAb,gllAa(x)- By (2), thereis an x € C,,

with G , (x) & I, hence by (1) (8] A0, 81| A € Se,ap,a/- n

80,81

§4. End of the proof

Let I, be the very good A-ideal defined in Corollary 2, A = B,. Let SQ,AO,AI =
Ny, a,- We define the very good A-ideals [;, and Sé,AO,A, by induction on j < k as
follows. If I, B;, S/ 4, 4, satisfy the assumptions of Lemma 4 let I, Bj41, 5.7, 4,
satisfy the requirements of this Lemma. Notethat I, C-- - C f,_{, Bg D -+~ DBy_1,
Sg,Ao,Al DERR Szic,_Alo,Ap B! ¢ I;.

Let Tp = (o, A, ADET: {a]UAGUA | =kaa<AgUA ). For{a,Ag,Ay),
(a’Ay,A)) € Ty write {a,A¢,4,) ~ o', Ap, AY) iff the monotone map = from
Ay U A onto AjU Af sends A; onto A}, and write

<Ol,A0,A1> ~* (al,[\b, ,1> iff <(X,A0,A1> -~ <a/1A2), /1>

and S({,AO,AI = Sc{cA&,,Aa for j < k. Considering that | N, »,| < 7for [AgUA,| <k,
each equivalence class of ~ is split into at most 27 equivalence classes of ~*,
hence by the Erdés-Rado Theorem

<k
¢—(1%)y

there is a set T C ¢, typT = 7% such that for {a},Aq, A, {a’},A5,A1 C T,
<a’AO’A1)1<aI1A’ ) ,l> e Tka <(1,A0,A1) -~ <aI9A, ) Il) we have

(4'1) <‘Q’A0,Al> ~* (a”Az)’ ’l)‘

Forv<rtand ACT lety | A denote the constant function with value v and do-
main A. Let « =minT. Let '\ {a} =Ty UT, be a partition of I'\ {«} into the union
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of two disjoint subsets of type 7*. By Corollary 4, S, r,r, # ©. Let {go,81) €
S..r,,r,- There are subsets I'; C I'; and ordinals »; < 7 such that typI'; = 7* and
g|Ti = »; for i < 2. By Corollary 5, this means

(vo|To,v1|T) € Syt ry-

Using the homogeneity (4.1), it follows that for all (a’,Aq,A) € T,
[Cl,} U A() UA] cT

<V0|A0y 4] |A1> € Sg'._AloyAl'

Let now ap <---< oy, ; €T for j </ < k. If follows easily by induction on /
that for every graph H with vertex set { y;:j </} and for every CC B*' C ¢ I,
there are x; € C,,, j </ in such a way that the map y; ~ x; is an isomorphism of
H and the graphs G;[{x;:j < /}]] are monochromatic in the colors »; for i < 2.
Indeed let A; = {@;:0 < j < I:{yo,y;} € H;} for i < 2. There is an xy € C,,
with G a0 18, (X0) & 11y
Applying the induction hypothesis for

C' = G spmia,(X0), 1—1 and H[{y:0<i<l}]

the claim follows. [ |
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